2025-04-15 02:12:33
提高空間分辨率和靈敏度目前,動物成像技術在不斷追求更高的空間分辨率和靈敏度。例如,正電子發射斷層掃描(PET)成像創新中,深度交互(DOI)測量技術在輻射傳感器中的應用,有望在保持高空間分辨率的同時顯著提高靈敏度16。通過開發基于新型半導體光電探測器(如硅光電倍增管SiPMs)的DOI探測器,可以實現亞毫米級的空間分辨率,接近PET成像的理論極限。這將使得對動物體內微小結構和生物過程的觀測更加清晰和準確。小動物PET技術也面臨著提高空間分辨率的挑戰,新的探測器技術不斷發展,有望降低空間分辨率的極限15。這將為研究動物體內的分子過程和疾病機制提供更精細的圖像信息。熒光染料在動物成像中標記神經元的機制較為復雜。浙江微泡熒光染料
特異性結合:生物標志物靶向熒光探針是克服早期**檢測困難的關鍵。例如,設計合成的雙光子熒光探針(NP-C6-CXB)用于檢測環氧合酶-2(COX-2)生物標志物。該熒光探針以萘酰亞胺為熒光基團,塞來昔布為靶向基團,在COX-2存在時,在溶液和*細胞中發出明亮的熒光,并且表現出很好的選擇性。其熒光強度與*細胞中COX-2酶的含量成正比,為COX-2酶表達的**識別和切除提供了可視化工具29。基于塞來昔布和苯并吩噁嗪的近紅外發射(700nm)熒光探針(NB-C6-CCB),用于檢測細胞內高爾基體中COX-2酶。在COX-2高表達的腫瘤細胞或組織中,該探針發射出近紅外熒光29。納米載體的作用:聚合物納米載體(膠囊、膠束和二氧化硅納米顆粒)可作為熒光探針的載體,將熒光染料的“智能”特征整合到合成材料中。結合在pH值或光照射發生變化時會裂解的生物反應性成分,是成功設計此類載體的基礎,這種載體具有在目標部位特異性加載和釋放***劑的能力8。例如,從柿子果實中制備的高熒光氮摻雜碳點(PCDs),通過1-乙基-3-(3-二甲基氨基丙基)碳二亞胺耦合反應,將***藥物阿霉素和吉西他濱固定在PCDs表面,形成PCDs@Dox和PCDs@Gem納米雜化物,用于生物成像和caspase誘導的細胞凋亡應用30。中國臺灣天津熒光染料噁嗪衍生物熒光染料由于其在動物神經成像方面的潛在應用價值,近年來受到了關注。
引入特定基團增加空間位阻:以一個兼顧光穩定性和水溶性的五甲川吲哚菁染料為母體,在中間共軛甲川直鏈引入氯原子和溴原子來增加染料分子的空間位阻,從而增強染料的光穩定性。由此合成出來了一系列新型近紅外菁染料,且這類菁染料的斯托克斯位移大于普通多甲川菁染料24。引入大空間位阻基團提高光穩定性:設計合成的染料是以吲哚為母核,通過在母核的N原子上引入空間位阻大的芐基及其衍生物來提高染料的光穩定性。循環伏安測試表明,合成的五甲川吲哚菁染料相對于中間共軛鏈有環己烯的七甲川菁染料有更好的光穩定性,同時也證明在吲哚環N原子引入芐基及其衍生物確實比引入直鏈烷基有更好的穩定性24。
花色素類有機熒光染料:優勢:以花色素為染料母核研發的長波長雙光子熒光染料,具有良好的水溶性和光學性能可控的特點。如通過結構優化制備出的具有光學可調控羥基的多功能長波長熒光團LDOH-4,具有合適的pKa值、熒光量子產率、較長的吸收與發射波長和較大的雙光子活性吸收截面,其熒光強度可通過羥基的保護與脫保護進行調控,在“***型”熒光探針設計及應用領域具有很好的前景17。應用場景:可用于生物環境中硝基還原酶及pH的高靈敏可視化檢測,如細胞、組織和***成像研究。熒光開關在熒光探針、超分辨熒光成像及防偽等領域都有廣泛的應用。
實時動態成像實時動態成像對于研究動物體內的生理和病理過程具有重要意義。通過將PET動態成像技術應用于高吞吐量多鼠成像方法,可以同時獲取動態腦圖像4。這為研究動物大腦的功能連接和神經活動提供了新的途徑。動物成像技術還可以結合基因編碼的神經調節工具,實現對動物大腦活動的實時監測和調控13。這將有助于深入了解動物的行為和認知過程,以及神經系統疾病的發生機制。四、標準化和質量控制小動物成像的標準化對于提高數據的有效性和可靠性至關重要。使用小動物成像設備的標準化,以及一般的動物處理,是確保數據可重復性和可靠性的關鍵14。例如,提供有效的小動物成像質量控制的指導,使用幻像建立質量控制計劃,可以標準化多中心研究或多掃描儀的圖像質量參數。在動物實驗中,需要解決由于動物處理引起的額外復雜性,以確保標準化的成像程序。實施標準化的動物神經成像協議將促進動物群體成像努力以及元分析和復制研究,提高研究結果的可比性和可靠性。合成了一系列中位引入電子給體對氨基苯或對羥基苯的五甲川菁染料。吉林熒光染料Fluor 680
通過不同的連接方法將四種氨基菁染料通過反相微乳液共價封裝在二氧化硅納米顆粒內。浙江微泡熒光染料
腫瘤細胞成像:近紅外熒光染料IR-780具備使多種腎透明細胞*細胞顯像的能力,對正常腎胚上皮細胞則無此能力,可用于血液中腎透明細胞*細胞的特異性診斷。這為腫瘤細胞的檢測和診斷提供了新的方法21。疾病標志物檢測:設計合成的近紅外熒光探針RB-Phenylacrylate(NOF1),用于高選擇性和高靈敏度檢測半胱氨酸(Cys),并成功應用于活細胞、斑馬魚和小鼠中半胱氨酸的近紅外熒光成像檢測。近紅外熒光探針RB-Phenyldiphenylphosphinate(NOF2)用于過氧亞硝酸根的熒光成像,實現了活細胞和小鼠炎癥模型中ONOO?的熒光成像檢測。這些探針為疾病標志物的檢測和成像提供了新的手段23。四、支持超分辨率成像新型近紅外氧雜蒽熒光染料如KRhs,可用于超分辨率成像。KRhs顯示出強烈的近紅外發射峰,在700nm處具有高熒光量子產率,且在沒有增強緩沖液的幫助下,表現出隨機熒光開關特性,支持單熒光團的時間分辨定位。KRhs被功能化為KRh-MitoFix、KRh-Mem和KRh-Halo,分別具有線粒體、質膜和融合蛋白靶向能力,可用于活細胞中這些目標的超分辨率成像20。浙江微泡熒光染料