2025-01-15 06:07:06
天然氣制氫是一種通過利用化學反應來將天然氣轉化為氫氣的技術。這種技術在工業和能源領域得到廣泛應用,在生產出高質量的氫氣的同時,也能夠為環境保護事業作出貢獻。1、提取天然氣**步就是從天然氣井中提取天然氣。長慶石化公司的天然氣儲備量很大,為了能夠利用這些儲備,公司從天然氣井中提取出來天然氣。據統計,公司每天從天然氣井中提取的天然氣量達到了120萬立方米,這些天然氣主要是由甲烷和少量的乙烷組成的。2、脫硫天然氣中含有一定的硫化氫氣體,這些氣體會影響到后續的制氫工藝同時也會對環境造成污染。3、脫碳這一步是將天然氣中的二氧化碳去除,也是為了減少二氧化碳對后續制氫過程的影響。4、制氫將經過脫硫和脫碳的天然氣送入蒸汽重整反應器中與蒸汽進行作用,反應生成氫氣。在這一步中,天然氣中的甲烷與水化合反應,產生氫氣和氧化碳。 吸附劑是變壓吸附提氫技術的關鍵。海南自熱式變壓吸附提氫吸附劑
煤制氣裝置:煤制氫裝置的生產過程為通過將煤漿和純氫,經氣化、凈化單元后生成純度達到、酸性氣。從目前已投產的煤氣化裝置運行情況來看,氣流床氣化技術的工業化發展速度快,其中以濕法進料氣化技術更為成熟。氫氣市場應用領域廣闊,應用于化工、冶金、電力、電子等行業,用作保護氣體、還原氣體、原料氣體電池燃料。其次,氫的熱值高,反應速度快,獲得途徑多,儲存形式多樣。由于其經濟性、機動性、環境友好性,因此擴大氫生產資源、開發新的制氫工藝以及改進現有制氫工藝,受到人們的普遍關注。制氫的原料包括:煤炭、水、烴類、氨氣、硫化氫、有機廢水、醇類。煤炭制氫成本低且可大規模制氫,但制氫工藝流程較長,操作環境差。以水為原料制氫方法包括:太陽能高溫電解水工藝、核熱高溫電解水工藝、電流循環制氫工藝、光催化分解水技術。分解硫化氫、氨氣制氫方法主要包括:高溫熱解法、光催化法和等離子化學離解法。 安徽推廣變壓吸附提氫吸附劑新型變壓提氫吸附劑正不斷提升提氫效率。
甲醇制氫技術主要基于甲醇的催化重整或水解反應,產生氫氣和二氧化碳或水。這前列程包括甲醇的預處理、催化反應、氣體分離和氫氣純化等步驟。當前,該技術的流程已經相對成熟,但仍有改進空間以提高效率和純度 甲醇的來源主要有兩種:天然氣和煤炭。天然氣甲醇的成本較低,但受天然氣價格影響;煤炭甲醇的成本較高,但煤炭資源豐富。甲醇的價格波動直接影響制氫成本,進而影響技術的經濟可行性。目前,甲醇制氫的效率已經相當高,但純度方面仍有提升空間。高純度的氫氣對許多應用領域至關重要,因此,進一步提高氫氣純度是當前技術面臨的一個重要挑戰。
中國氫能協會對“綠氫”作出了初步定義,“綠氫”是指通過可再生能源電解水制氫而得到的氫氣,它是一種清潔能源,與傳統的灰氫(通過化石燃料,煤炭、石油、天然氣等,燃燒產生的氫氣)有著明顯的區別,“綠氫”的生產過程中使用的電力必須來自于可再生能源,如太陽能、風能、水能等。2020年12月29日,中國氫能聯盟提出《低碳氫、清潔氫與可再生能源氫的標準與評價》,當中指出在單位氫氣碳排放量方面,低碳氫的閾值為14.51千克二氧化碳當量/千克氫,清潔氫和可再生氫的閾值為4.9千克二氧化碳當量/千克氫,同時可再生氫要求其制氫能源為可再生能源。變壓吸附提氫技術的應用范圍正在不斷擴大。
變壓吸附是一種新型氣體吸附分離技術,它有如下特點(1)產品純度高。(2)一般可在室溫和不高的壓力下工作,床層再生時不用加熱,節能經濟。(3)設備簡單,操作、維護簡便。(4)連續循環操作,可完全達到自動化。因此,當這種新技術問世后,就受到各國工業界的關注,競相開發和研究,發展迅速,并日益成熟。任何一種吸附對于同一被吸附氣體(吸附質》來說,在吸附平衡情況下,溫度越低,壓力越高,吸附量越大。因此,氣體的吸附分離方法,通常采用變溫吸附或變壓吸附兩種循環過程。如果壓力不變,在常溫或低溫的情況下吸附,用高溫解吸的方法,稱為變溫吸附《簡稱TSA)。變壓吸附技術是以吸附劑(多孔固體物質)內部表面對氣體分子的物理吸附為基礎,利用吸附劑在相同壓力下易吸附高沸點組份、不易吸附低沸點組份和高 壓下吸附量增加(吸附組份)低壓下吸附量減小(解吸組份)的特性。將原料氣在壓力下通過吸附劑床層,相對于氫的高沸點雜質組份被選擇性吸附,低沸點組份的氫不易吸附而通過吸附劑床層(作為產品輸出),達到氫和雜質組份的分離。然后在減壓下解吸被吸附的雜質組份使吸附劑獲得再生,已利于下一次再次進行吸附分離雜質。 變壓吸附提氫技術是一種高效、環保的氫氣提取方法。浙江大型變壓吸附提氫吸附劑
高性能變壓提氫吸附劑助力氫能產業發展。海南自熱式變壓吸附提氫吸附劑
氫能優點,在于儲量豐富、燃燒快、無毒害和發熱值高等。但是氫能缺點在于制造成本高,而且還不穩定。作為一種二次能源,氫能來源***,清潔低碳,應用場景豐富,而且有利于推動傳統化石能源的清潔高效利用,可以支撐可再生能源的大規模發展。我們看待事物,既要看現實,更要看未來。近年來,全球能源轉型正在加快,氫能及氫燃料電池產業發展迅速,并逐步成為全球能源科技**和未來能源轉型發展的重要方向。從歷史發展來看,在二戰期間,人們便開始研發氫能技術,并且不斷取得實際研究的效果而逐漸得到實際利用,比如氫能已經被用作V-2火箭的液體推進劑。當今火箭的燃料也大都以液氫為主,科學家已經開始研究在超音速飛機和洲際客機上利用氫能作動力的燃料,氫能源汽車已經被開發并投入試運行。人類需要設想,需要想象,需要展望。我們可以大膽設想,如果氫能源汽車一旦在全世界范圍內得到大規模的普及和利用,那么全球能源格局和能源結構必將發生**性的變化。 海南自熱式變壓吸附提氫吸附劑