2024-12-27 01:14:51
充電管理芯片根據(jù)工作模式可分為開關(guān)模式、線性模式和開關(guān)電容模式。線性模式適用于小功率便攜電子產(chǎn)品,對(duì)充電電流、效率要求不高,通常不高于1A,但對(duì)體積、成本則有較高要求。開關(guān)模式效率高,適用于大電流應(yīng)用,且應(yīng)用較靈活,可根據(jù)需要設(shè)計(jì)為降壓、升壓或升降壓架構(gòu),常用的快充方案通常都是開關(guān)模式。開關(guān)電容模式可以做到高達(dá)97%以上的效率,但由于架構(gòu)的原因,其輸出電壓與輸入電壓通常成一個(gè)固定的比例關(guān)系,實(shí)際應(yīng)用中通常與開關(guān)型充電管理芯片配合使用。BMS多重**防護(hù)系統(tǒng)可以有效防止過充、過放、過流、過壓等問題,確保用戶和設(shè)備**。儲(chǔ)能柜BMS電池管理系統(tǒng)價(jià)格
BMS保護(hù)板的被動(dòng)均衡技術(shù)。顧名思義,被動(dòng)均衡就是將單體電池中容量稍多的個(gè)體消耗掉,從而實(shí)現(xiàn)整體的均衡。被動(dòng)均衡又稱為能量耗散式均衡,工作原理是在每節(jié)電芯上并聯(lián)一個(gè)電阻,當(dāng)某個(gè)電芯提前充滿,而又需要繼續(xù)給其他電芯充電時(shí),通過電阻對(duì)電壓高的電芯以熱量形式釋放電量,為其他電芯爭取更多充電時(shí)間。由于被動(dòng)均衡結(jié)構(gòu)更為簡單,所以使用比較廣。但是被動(dòng)均衡也有明顯的缺點(diǎn),由于結(jié)構(gòu)簡單制作成本低,采用電阻耗能產(chǎn)生熱量,從而會(huì)使整個(gè)系統(tǒng)的效率降低。并且均衡時(shí)間短,效果不佳,一般均衡時(shí)間都在充電周期末期。此外,只能對(duì)高電壓電池進(jìn)行放電,無法對(duì)劣質(zhì)電池進(jìn)行改進(jìn)。在適用場(chǎng)景上,被動(dòng)均衡更適合于小容量、低串?dāng)?shù)的鋰電池組應(yīng)用,可以釋放每顆電芯的儲(chǔ)能能力,實(shí)現(xiàn)電量的有效利用。儲(chǔ)能柜BMS電池管理芯片集中式BMS架構(gòu)具有成本低、結(jié)構(gòu)緊湊、可靠性高的優(yōu)點(diǎn)。
電池管理系統(tǒng)(BMS)的主要職責(zé)包括監(jiān)控、保護(hù)和優(yōu)化電池性能。硬件BMS保護(hù)板指的是完全基于硬件實(shí)現(xiàn)的電池管理系統(tǒng),其設(shè)計(jì)注重電路和傳感器等硬件組件的整合。與之相對(duì),軟件保護(hù)板BMS則采用嵌入式軟件實(shí)現(xiàn)電池管理系統(tǒng)的一種方式。與硬件板相比,軟件板更注重算法、控制邏輯和數(shù)據(jù)處理方面的優(yōu)化。在選擇硬件或軟件BMS保護(hù)板時(shí),需要根據(jù)具體的應(yīng)用需求和預(yù)算來做出權(quán)衡。如果是對(duì)基本功能的要求較高,且成本預(yù)算較為有限,BMS硬件保護(hù)板可能是一個(gè)不錯(cuò)的選擇。而如果需要更高級(jí)的電池管理策略,對(duì)靈活性和升級(jí)能力有更高要求,那么軟件BMS板可能更為合適。
BMS保護(hù)板的SOX算法估算方法。SOX包括SOC、SOE和SOP。SOC估計(jì)方法傳統(tǒng)方法:安時(shí)積分法、開路電壓法基于電池模型的方法:卡爾曼濾波法、粒子濾波算法神經(jīng)網(wǎng)絡(luò)算法:神經(jīng)網(wǎng)絡(luò)算法。SOP算法:根據(jù)電池的SOC和溫度,查表確定持續(xù)充放電**大功率瞬時(shí)充放電**大功率。電芯的去極化速度,決定當(dāng)前**大功率使用的頻率。當(dāng)SEI膜表面的Li離子堆積速度大于負(fù)極的吸收速度時(shí)候,就會(huì)發(fā)生電壓下降,**大功率無法維持。因此,SOP的計(jì)算難點(diǎn)是峰值功率與持續(xù)功率如何過度?SOH算法:兩點(diǎn)法計(jì)算SOH根據(jù)OCV-SOC曲線確定兩個(gè)準(zhǔn)確的SOC值,并安時(shí)累積計(jì)算這兩個(gè)SOC之間的累積充入或放出電量,然后計(jì)算出電池的容量,從而得到SOH。算法有一定難度,需要大量的數(shù)據(jù)和模型,才能比較準(zhǔn)確的估算。BMS鋰電池保護(hù)板是對(duì)串聯(lián)鋰電池組的充放電保護(hù)。
與System-side電量計(jì)相比,Pack-side電量計(jì)芯片直接采樣電芯電壓,電壓更準(zhǔn)確,有利于提高電量計(jì)量、充電以及保護(hù)精度;Pack-side采用可集成加密認(rèn)證算法的電量計(jì),綜合成本更低;Pack-side電池保護(hù)板PCM電壓、電流、溫度校準(zhǔn)更容易,項(xiàng)目開發(fā)周期更短;Pack-side電量計(jì)面對(duì)可插拔電池時(shí)RAM數(shù)據(jù)不丟失,數(shù)據(jù)更準(zhǔn)確。電池計(jì)量芯片屬數(shù)?;旌闲盘?hào)芯片,涉及計(jì)量算法、AFE/ADC及計(jì)算電路等,關(guān)鍵技術(shù)體現(xiàn)在計(jì)量精度、管理電池串?dāng)?shù)、平臺(tái)電壓、功耗水平等。其中AFE自帶ADC,可以進(jìn)行模數(shù)轉(zhuǎn)換,但需要配合嵌入式微控制器(MCU)才能實(shí)現(xiàn)電量計(jì)功能。17888 BMS還需要根據(jù)采集到電池的相關(guān)信息。儲(chǔ)能柜BMS電池管理系統(tǒng)價(jià)格
BMS硬件保護(hù)板的主要功能有幾個(gè)方面。儲(chǔ)能柜BMS電池管理系統(tǒng)價(jià)格
電池計(jì)量芯片(電量計(jì)IC)主要用來采集電芯電壓、溫度、電流等信息,通過庫侖積分和電池建模等方式計(jì)算電池電量、健康度等信息,并通過I2C/SMBUS/HDQ等通信端口與外部主機(jī)通信。電量計(jì)IC與電池保護(hù)IC既可分立,也可集成。一級(jí)保護(hù)IC可以控制充、放電MOSFET,保護(hù)動(dòng)作是可恢復(fù)的,即當(dāng)發(fā)生過充、過放、過流、短路等**事件時(shí)就會(huì)斷開相應(yīng)的充放電開關(guān),**事件解除后就會(huì)重新恢復(fù)閉合開關(guān),不影響電池的繼續(xù)使用。硬件、算法和固件是電量計(jì)芯片的三大關(guān)鍵要素,硬件用來實(shí)現(xiàn)高精度采樣和低功耗運(yùn)行;算法用來對(duì)電池進(jìn)行建模;固件用來實(shí)現(xiàn)算法編程,計(jì)算輸出容量信息。在選擇電量計(jì)芯片時(shí),通常需要考慮到電芯化學(xué)類型、電芯串聯(lián)數(shù)目、通信接口、電量計(jì)放在電池包內(nèi)(Pack-side)還是放在系統(tǒng)板上(System-side)、電量計(jì)算法、是否集成電池保護(hù)均衡等功能、支持充放電電流大小,以及存儲(chǔ)介質(zhì)和封裝形式等。儲(chǔ)能柜BMS電池管理系統(tǒng)價(jià)格